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Abstract
A surprising result of Pitts (1992) says that propositional
quantifiers are definable internally in intuitionistic proposi-
tional logic (IPC). The main contribution of this paper is to
provide a formalization of Pitts’ result in the Coq proof assis-
tant, and thus a verified implementation of Pitts’ construc-
tion. We in addition provide an OCaml program, extracted
from the Coq formalization, which computes propositional
formulas that realize intuitionistic versions of ∃𝑝𝜙 and ∀𝑝𝜙
from 𝑝 and 𝜙 .

CCS Concepts: • Software and its engineering → For-
mal software verification; • Theory of computation →
Higher order logic; Constructive mathematics; Proof
theory; Logic and verification.

Keywords: intuitionistic logic, propositional quantifiers, au-
tomated theorem proving, extraction, sequent calculus
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1 Introduction
A central aim of logic is to understand the structure of what
can be deduced from a formula, and what is required to de-
duce it. In particular, given a formula𝜙 and an atomic propo-
sition 𝑝 appearing in it, one may ask what formulas that are
independent from 𝑝 entail, or are entailed by, 𝜙 . In second-
order logic, the definition of the propositional quantifier ∃𝑝𝜙
says precisely that it is the strongest formula not containing
𝑝 and entailed by 𝜙 , and dually, ∀𝑝𝜙 is the weakest formula
not containing 𝑝 that entails 𝜙 .
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In classical propositional logic, these quantifiers are sim-
ply definable internally as

∃𝑝𝜙 ≡ 𝜙 [⊤/𝑝] ∨ 𝜙 [⊥/𝑝],
∀𝑝𝜙 ≡ 𝜙 [⊤/𝑝] ∧ 𝜙 [⊥/𝑝] .

However, in logics with more than two truth values, it is
much less obvious how to internalize propositional quanti-
fiers. Indeed, a surprising result of Pitts [17] says that propo-
sitional quantifiers are still definable internally in intuition-
istic propositional logic (IPC). The proof relies on an intri-
cate constructive definition of the propositional quantifiers,
and subsequently a large case distinction to prove the cor-
rectness. While various alternative proofs, notably [10], and
generalizations of Pitts’ technique to other logics and proof
calculi [14], have been obtained since then, the computa-
tional content of Pitts’ theorem has remained under-empha-
sized up until now, and, to the best of our knowledge, the
algorithm for computing the propositional quantifiers has
never been implemented in a useable way.

Main Contribution. The main contribution of this pa-
per is to provide a formalization of Pitts’ result in the Coq
proof assistant, and thus a verified implementation of Pitts’
construction.We in addition provide an OCaml program, ex-
tracted from the Coq formalization, which computes propo-
sitional formulas that realize intuitionistic versions of ∃𝑝𝜙
and ∀𝑝𝜙 from 𝑝 and 𝜙 .

Methodology. There exist two strands of proof of Pitts’
theorem, one proof-theoretic [17], the other via Kripke se-
mantics [10].The one we follow in this paper is based on the
proof-theoretic method of [17], and relies on a proof calcu-
lus for IPC known as LJT orG4ip in the literature [8, 13, 21].
The main features of the calculus G4ip are that it allows
for a terminating proof search without loop checking, and
that it does not have a contraction rule. This calculus has
itself often been at the basis of the implementation of proof
search for proof assistants, notably Coq’s firstorder tac-
tic [4], and other implementations of decision procedures
for IPC. The most intricate part of Pitts’ proof, and conse-
quently also of our formalization, is the proof of correctness
of the definition of propositional quantifiers, which is done
by induction on the structure of a G4ip-proof.

The bulk of the technical work that was required for the
formalization falls into several parts that we briefly indi-
cate here, and will describe in more detail in the rest of
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the paper. First, as a necessary foundation for the later re-
sults, we formalized the definition of the sequent calculus
G4ip and the proofs of admissibility of various inversion
rules, contraction, and weakening [8]. The sequent calcu-
lus G4ip, and consequently Pitts’ proof, make essential use
of finite multisets and the fact that the Dershowitz-Manna
(DM) ordering [5] on them is well-founded. For this, we rely
on an existing formalization of this fact in the CoLoR Li-
brary [1]. Second, Pitts’ definition of the propositional quan-
tifiers was originally given in a declarative form [17, Ta-
ble 5], involving a mutual dependent induction on the well-
founded DM multiset ordering. We translate this declara-
tive construction into a Coq definition that still clearly mir-
rors the pen-and-paper definition, while moreover ensuring
that Coq’s strict requirements about fixpoint termination
are met, using Coq’s Program library.Throughout the proof,
we make use of the std++ library of the Iris project [18] for
its tactics for multiset equality resolution, as well as some
custom multiset tactics written for this proof. Note that our
development does not rely on any extra axiom.

RelatedWork. While the calculusG4ip has been used in
proof assistants, the calculus itself and its main admissibility
results have not been previously formalized, as far as we are
aware. Our work on this can be placed within the context of
a long-standing interest in formalizing sequent calculi and
foundational results about intuitionistic logic; we highlight
only a few of the existing results that are most closely re-
lated to our work here.

Herbelin and Lee [12] prove cut elimination for a first-
order intuitionistic logic, using semantic methods. A syntac-
tic proof of cut admissibility, but for classical propositional
logic, was formalized in Coq by van Doorn [6]. While Coq’s
firstorder tactic [4] uses an extension of G4ip to solve
first-order goals containing inductively defined terms, as far
as we know, properties of this tactic itself have not been
mechanized.We propose that the formalization of G4ip that
we give here could serve as a stepping stone towards a fu-
ture correct-by-design implementation of this tactic.

It is well-known that propositional quantifiers are related
to strong forms of interpolation properties. In particular, a
well-known consequence of Pitts’ theorem is that intuition-
istic propositional logic has the so-called uniform interpola-
tion property. Deducing uniform interpolation from propo-
sitional quantifiers in addition requires the (non-uniform)
Craig interpolation property. The non-uniform version of
interpolation for intuitionistic logic has been formalized in
Coq [2], Isabelle/HOL [19], and Nominal Isabelle [3]. Also,
in very recent work by Gattinger [9] towards formalizing
a proof of interpolation for propositional dynamic logic, ta-
bleaux methods for non-classical logics were formalized in
Lean. Another result, which has long been known to ex-
perts in intuitionistic logic to be related to Pitts’ theorem, is
Ruitenburg’s fixpoint theorem for IPC [20]. This result was

previously formalized in Coq [15, 16], and served as one of
the original sources of inspiration for the project that we
report on here.

Outline. The rest of the paper is structured as follows. In
Section 2 we state more precisely the main theorem (Theo-
rem 2.1) that we formalized in this project. We then explain
in Section 3 how we implemented the proof calculus G4ip
using inductive types and multi-sets, and how we formal-
ized the main results about this calculus. In Section 4 we de-
scribe the work done on implementing the definition of the
propositional quantifiers. Section 5 outlines the main ingre-
dients of the correctness proof of Theorem 2.1. In Section 6
we describe the extracted program for computing proposi-
tional quantifiers, and some optimizations. Some possible
directions for future work that we uncovered as a result of
this project are described in the final Section 7.

Source Code and Documentation. The documentation
of our Coq formalization is available at

https://ipqcoq.github.io
together with an archive containing the source code. When
reading this paper on screen, colored text contains a hyper-
link to the corresponding Coq code.

2 Formal Theorem Statement
We will now state Pitts’ theorem more precisely. Through-
out this paper, by a formula we mean an expression built
from atomic propositions 𝑝, 𝑞, . . . , the constant⊥ and binary
connectives ∧,∨ and →. Given a set 𝑆 of atomic proposi-
tions, we write 𝐹 (𝑆) for the set of formulas whose atomic
propositions are among 𝑆 and we write ⊢ for entailment in
IPC; we will discuss this notion in more detail below.

Theorem 2.1 ([17], Thm. 1). Let 𝑝 be an atomic proposition
and𝑉 a set of atomic propositions with 𝑝 ∉ 𝑉 . For any formula
𝜙 ∈ 𝐹 (𝑉 ∪ {𝑝}), there exist formulas 𝐸𝑝𝜙 and 𝐴𝑝𝜙 in 𝐹 (𝑉 )
such that

1. 𝜙 ⊢ 𝐸𝑝𝜙 and for any𝜓 ∈ 𝐹 (𝑉 ), if 𝜙 ⊢ 𝜓 then 𝐸𝑝𝜙 ⊢ 𝜓 ,
2. 𝐴𝑝𝜙 ⊢ 𝜙 and for any 𝜃 ∈ 𝐹 (𝑉 ), if 𝜃 ⊢ 𝜙 then 𝜃 ⊢ 𝐴𝑝𝜙 .

As the notation suggests, the formula 𝐸𝑝𝜙 in this theorem
realizes the propositional quantifier ∃𝑝𝜙 and that the for-
mula 𝐴𝑝𝜙 realizes ∀𝑝𝜙 . Note that the atomic propositions
occurring in 𝜓 and in 𝜃 are restricted to belong to a sub-
set of those appearing in 𝜙 , as was also the case in Pitts’
original proof. The formulas 𝐸𝑝𝜙 and 𝐴𝑝𝜙 also satisfy the
slightly stronger property of being, respectively, right and
left uniform interpolants of 𝜙 with respect to 𝑝; we will fur-
ther remark on links with uniform interpolation in Section 7
below.

3 A Terminating Sequent Calculus
In traditional sequent calculi for IPC, such as Gentzen’s sys-
tem LJ, some care is needed to obtain a terminating proof
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search procedure. As pointed out in [7], a core reason for
this is that upward applications of the following proof step,
which combines left implication and contraction,

Γ, 𝜙1 → 𝜙2 ⊢ 𝜙1 Γ, 𝜙2 ⊢ 𝜓
Γ, 𝜙1 → 𝜙2 ⊢ 𝜓

can lead to infinite loops. This problem was solved in [7, 21]
by removing left implication and contraction from the cal-
culus, and instead ‘splitting’ the above proof step into four
more detailed cases, depending on the principal connective
of the formula𝜙1. Moreover, the environment Γ of a sequent
is turned from a set into a multiset, in order to avoid ‘hid-
den’ applications of contraction rules: borrowing an intu-
ition from Linear Logic, the application of a rule in this new
calculus ‘consumes’ the formulas in the antecedent.The end
result is a sequent calculus for IPC, G4ip, that has a termi-
nating proof search by construction, without the need for
any loop-checking.1

Working towards our formalization of the sequent calcu-
lus G4ip, we define an environment to be a finite multiset
of formulas, where we import the multisets, and the power-
ful tactics for them, from the std++ library [18]. Here, we
recall that the finite multisets of a set 𝑋 may be defined as
finite words over 𝑋 up to permutation, or alternatively as
finitely-supported functions 𝑋 → N. Following std++, our
formalization uses the first of these two perspectives; but
see Section 7 for some remarks on this.

We formalize sequent calculus proofs of G4ip as the in-
ductive type Provable Γ 𝜙 , parametric in an environment Γ
and a formula 𝜙 . Inhabitants of the type Provable Γ 𝜙 will
correspond to proof trees following the G4ip rules ending
in the sequent Γ ⊢ 𝜙 , so we introduce the notation “Γ ⊢ 𝜙”
for the type Provable Γ 𝜙 . The following definition shows
our formalization in Coq, where we omit six standard rules
for space reasons and to focus on the most relevant ones; for
the full definition, we refer to the Coq code.

Definition 3.1 (Provability in G4ip).
Inductive Provable : env -> form -> Type :=
| Atom : ∀ Γ p,

Γ • (Var p) ⊢ (Var p)
| ExFalso : ∀ Γ 𝜙,

Γ • ⊥ ⊢ 𝜙
(* six standard rules for Or, And, and Imp-right *)
| ImpLVar : ∀ Γ p 𝜙 𝜓,

Γ • Var p • 𝜙 ⊢ 𝜓
-> Γ • Var p • (Var p → 𝜙) ⊢ 𝜓
| ImpLAnd : ∀ Γ 𝜙1 𝜙2 𝜙3 𝜓,

Γ • (𝜙1 → (𝜙2 → 𝜙3)) ⊢ 𝜓
-> Γ • ((𝜙1 ∧ 𝜙2) → 𝜙3) ⊢ 𝜓
| ImpLOr : ∀ Γ 𝜙1 𝜙2 𝜙3 𝜓,

Γ • (𝜙1 → 𝜙3) • (𝜙2 → 𝜙3) ⊢ 𝜓

1The calculus is actually known under two names in the literature: LJT [7]
and G4ip [8]. Since the name LJT has also been used, especially in the
formal proof community, for a different terminating sequent calculus for
IPC [11], we follow [8] and refer to the calculus used in this paper asG4ip.

-> Γ • ((𝜙1 ∨ 𝜙2) → 𝜙3) ⊢ 𝜓
| ImpLImp : ∀ Γ 𝜙1 𝜙2 𝜙3 𝜓,

Γ • (𝜙2 → 𝜙3) ⊢ (𝜙1 → 𝜙2) -> Γ • 𝜙3 ⊢ 𝜓
-> Γ • ((𝜙1 → 𝜙2) → 𝜙3) ⊢ 𝜓
where "Γ ⊢ 𝜙" := (Provable Γ 𝜙).

We remark that a first advantage of our use of multi-sets,
rather than, for example, lists, is that the formalization of
provability in G4ip is very close to the pen-and-paper defi-
nition. For example, the rule ImpLAnd would be written on
paper in almost exactly the same way as in Definition 3.1:

Γ, (𝜙1 → (𝜙2 → 𝜙3)) ⊢ 𝜓
Γ, ((𝜙1 ∧ 𝜙2) → 𝜙3) ⊢ 𝜓

A definition of environments as lists, on the other hand,
would have to make explicit the way that a rule’s principal
formula occurs in the context. For example, the rule ImpLAnd
would have to be formalized as
ImpLAnd : ∀ Γ1 Γ2 𝜙1 𝜙2 𝜙3 𝜓,

Γ1 ++ (𝜙1 → (𝜙2 → 𝜙3)) :: Γ2 ⊢ 𝜓
-> Γ1 ++ ((𝜙1 ∧ 𝜙2) → 𝜙3) :: Γ2 ⊢ 𝜓

Explicit witnesses for Γ1 and Γ2 would then have to be sup-
plied when applying this rule.

A simple way to prove termination of the calculus G4ip,
which we will also crucially use in our formalized proof of
Pitts’ theorem, is to assign an integer weight to each for-
mula, as follows.

Definition 3.2 (Weight of a formula). The weight of a for-
mula is inductively defined as:

weight(⊥) = 1

weight(𝑞) = 1

weight(𝜙 ∨𝜓 ) = 3 + weight(𝜙) + weight(𝜓 )
weight(𝜙 ∧𝜓 ) = 2 + weight(𝜙) + weight(𝜓 )
weight(𝜙 → 𝜓 ) = 1 + weight(𝜙) + weight(𝜓 )

A well-founded strict preorder on the set of formulas is
then obtained by putting 𝜙 < 𝜓 iff weight(𝜙) < weight(𝜓 ).

When 𝑆,𝑇 are finite multisets of a set𝑋 , we write 𝑆⊎𝑇 for
their union and when 𝑥 ∈ 𝑋 we use the convenient notation
𝑆 • 𝑥 for 𝑆 ⊎ {𝑥}. When < is a preorder on 𝑋 , recall that the
Dershowitz-Manna ordering, ≺, on the set of finite multisets
of𝑋 may be defined as the transitive closure of the one-step
relation 𝑆 ⊎ 𝑇 ≺ 𝑆 • 𝑥 , where 𝑇 is any finite multiset such
that 𝑡 < 𝑥 for all 𝑡 ∈ 𝑇 . A crucial property of this order ≺ is
that it is well-founded whenever the original order < is:

Theorem 3.3 ([5]). If the order < on 𝑋 is well-founded, then
≺ on the finite multisets of 𝑋 is well-founded.

Theorem 3.3 has been previously mechanized in Coq as
part of the multiset utilities of the CoLoR library [1], see
MultisetOrder.mord_wf. Since we use the multisets defined
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in std++, which come with convenient tactics, some addi-
tional work was needed to convince Coq that std++ mul-
tisets implement CoLoR’s multiset interface to access this
theorem.

In particular, we will make extensive use of the Dersho-
witz-Manna ordering ≺ on environments, derived from the
well-founded order < on formulas. In fact, for convenient
use in our proofs, we will often use the Dershowitz-Manna
ordering on pointed environments. By a pointed environ-
ment, we simply mean a pair (Γ, 𝜙) where Γ is an environ-
ment and 𝜙 is a formula. Given two pointed environments
(Γ, 𝜙) and (Δ,𝜓 ), we write (Γ, 𝜙) ≺· (Δ,𝜓 ) whenever the
multiset Γ•𝜙 is ≺-below Δ•𝜓 . The following is now a corol-
lary of the Dershowitz-Manna theorem that will be used cru-
cially in our proof.

Proposition 3.4 (Well-foundedness of ≺·). The order ≺· on
pointed environments is well-founded.

The well-foundedness of ≺· is useful because G4ip-rules,
when read upwards, make sequents strictly descend in this
order. While we did not need this fact in our Coq formaliza-
tion, it is behind several of the basic tactics that we write to
manipulate proofs in G4ip.

Proposition 3.5. For any G4ip-rule with conclusion Γ ⊢ 𝜙
and for any of its hypotheses Δ ⊢ 𝜓 we have (Δ,𝜓 ) ≺· (Γ, 𝜙).

Indeed, any G4ip-rule replaces a formula in the rule’s
conclusion with 0, 1 or 2 formulas with smaller weight in
the rule’s hypothesis. One of the ‘worst case’ rules in this
respect is, for example, ImpLOr, in which, reading upwards,
a multiset of the form

Γ • (𝜙1 ∨ 𝜙2) → 𝜙3

in the conclusion of the rule is replaced by the multiset
Γ • (𝜙1 → 𝜙3) • (𝜙2 → 𝜙3)

in the rule’s hypothesis. Since the formulas 𝜙1 → 𝜙3 and
𝜙2 → 𝜙3 have strictly lower weight than the formula (𝜙1 ∨
𝜙2) → 𝜙3, we have descended in the order ≺·, and in fact
we have replaced one formula in the initial multiset by just
2 formulas of smaller weight. Other rules descend in the or-
der in a different way. For instance, ImpLAnd only replaces a
formula with a single one, which is not structurally smaller
(it has the same depth and number of connectives), but is
still of lower weight.

The derivation rules of G4ip, as implemented in Coq by
the Provable type, are compatible with multiset equivalence
by construction, without the need of structural rules, i.e., a
rule of the form Γ•𝜙 ⊢ 𝜓 may be applied also to any sequent
of the form Γ′ ⊢ 𝜓 where Γ′ contains 𝜙 . Formally, this is
stated by the following typeclass declaration:

Instance proper_Provable :
Proper ((≡@{env}) ==> (=) ==> (=)) Provable.

Here, ≡ is the extensional equivalence of multisets: two
multisets are equivalent if they contain the same elements
with the same multiplicities. This typeclass declaration is a
simple but major ingredient in all of our proofs on G4ip
derivations as it allows to seamlessly change the antecedent
of target judgment with an equivalent one. It is used every
time we need to put forward a formula of the antecedent
thatmatches the principalG4ip-rule or lemma that wewant
to apply next. The proof of proper_Provable crucially re-
lies on the multiset solver tactic of the IRIS project’s std++
library [18]. We import this tactic in a slightly modified
form in our proof as a custom tactic ms.

In various places, Pitts’ pen-and-paper proof relies on in-
ferences that are well-known to be valid in intuitionistic
propositional logic, but are not strictly part of the defini-
tion of the proof calculus G4ip. In other words, [17] takes
as given the equivalence betweenG4ip and other calculi for
IPC, including in particular LJ. However, in our formaliza-
tion, it was one of our design principles to keep our devel-
opment self-contained and independent from ‘well-known
facts’ about IPC. As a consequence, we had to formalize sev-
eral facts about the proof calculus G4ip that are used im-
plicitly in Pitts’ proof. Fortunately, the essential steps were
available in Dyckhoff & Negri’s 2000 article [8].

Using the proof methods of [8], we formalized the admis-
sibility of various rules inG4ip, where we recall that a proof
rule 𝑅 is admissible if any sequent that is provable using the
rule 𝑅 is still provable without it. In particular, we formal-
ize the facts that the contraction and the usual implication
left rules are admissible in the calculus G4ip. As a conse-
quence, these rules may be used in arguments showing the
correctness of the constructions below.The fact that they are
not included as rules in the definition of the proof calculus,
however, is crucial to be able to perform the dependent in-
duction that we describe in the next section. We also note
here that the admissibility of the cut rule [8, Sec. 6] was not
needed for Pitts’ proof; but we will come back to this point
in Proposition 5.1 and Section 7.

4 A Mutual Dependent Induction
Pitts’ construction of the propositional quantifiers is a de-
clarative one, with 𝐸 and 𝐴 being defined through a mutual
dependent induction, given in the paper proof by a table
of rules [17, Table 5], also see Table 1 below, which gives
a representative excerpt, in a notation closer to our imple-
mentation. In this section, we describe the work that was
needed to turn this declarative definition first into an actual
algorithm, and then into a Coq definition which has the ad-
ditional constraint of requiring termination by construction.

Here, we highlight this construction not only as an im-
plementation of Pitts’ definition that was of course a nec-
essary step for our formal proof, but also as an interesting
case study in the use of the Coq proof assistant for setting
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up a rather complex inductive definition, which, as we will
explain below (Definition 4.3) required making explicit a
rather involved function signature.

We managed to achieve our definition of 𝐸 and 𝐴 while
keeping as close as possible to the structure of the origi-
nal “pen-and-paper” definition, so that anyone familiar with
Pitts’ article will easily see how our formalized definitions
of 𝐸 and 𝐴 correspond to it.

The Paper Definitions of 𝐸 and 𝐴. Before explaining
our formalization method, let us first briefly recall the idea
behind the definitions of the formulas 𝐸𝑝𝜙 and 𝐴𝑝𝜙 of [17].
The formula 𝐸𝑝𝜙 should represent, according to the state-
ment of Theorem 2.1, the strongest (up to equivalence) pos-
sible 𝑝-free consequence of 𝜙 . It will be defined as a big
conjunction over a particularly chosen set of 𝑝-free conse-
quences E𝑝 (𝜙), which serves as a ‘basis’ for the 𝑝-free conse-
quences of𝜙 , in the sense that any other 𝑝-free consequence
of 𝜙 is already a consequence of this conjunction. Elements
of E𝑝 (𝜙) can be thought of as various ‘reasons’ why an arbi-
trary 𝑝-free formula 𝜓 might follow from 𝜙 , and the defini-
tion of [17, Table 5] exhaustively enumerates all the relevant
reasons. It is a priori not clear at all that this basis E𝑝 (𝜙) can
be chosen to have finite cardinality; this is, in a sense, the
main achievement of Theorem 2.1.

Essentially the same remarks apply to 𝐴𝑝𝜙 , except that
this formula is defined as a big disjunction over a set A𝑝 (𝜙).
Finally, in order to recursively define the finite sets E𝑝 (𝜙)
andA𝑝 (𝜙), it turns out to be convenient for the correctness
proof to generalize their arguments a bit: in Pitts’ definition,
the function E𝑝 takes as input any environment, and the
function A𝑝 takes as input any pointed environment.

In summary, Pitts defines finite sets of formulas E𝑝 (Δ)
and A𝑝 (Δ, 𝜙) by a mutual well-founded induction on the
pointed environment (Δ, 𝜙) in the order ≺·, where

• 𝐸𝑝 (Δ) :=
∧ E𝑝 (Δ),

• 𝐴𝑝 (Δ, 𝜙) :=
∨A𝑝 (Δ, 𝜙),

• the sets E𝑝 (Δ) andA𝑝 (Δ, 𝜙) are defined by two tables,
which encode a pattern match on the arguments.

The original table [17, Table 5] contains 9 rules for the defini-
tion of E𝑝 (Δ) and 13 rules for the definition of A𝑝 (Δ, 𝜙). In
Table 1, we give a representative excerpt of this table, which
the reader may refer to as a guiding example while we ex-
plain our implementation of the full table.

Notation. Throughout the rest of this section, and the
corresponding Coq code, we fix a variable 𝑝 , with respect to
which the propositional quantifiers will be computed:
Variable p : variable.

Formalizing the Definitions of 𝐸 and 𝐴. We will now
explain how we formalized the mathematical description
above into a Coq definition. To give a quick overview, we
will first describe the rules for computing E and A in Def-
initions 4.1 and 4.2. Definition 4.3 then provides the main
definition of the formulas 𝐸 and 𝐴.

Our implementation of the table’s rules relies on a simple
observation that these rules have a degree of determinism in
them, as we will explain now. At first glance, it may look as
though the number of 𝐸-rules that canmatch a given set Δ is
not easily bounded; especially given rule 𝐸5, which matches
two elements of Δ simultaneously. However, it turns out
that at most one rule can be applied for each element 𝜃 of
Δ. In particular, rule 𝐸5 only applies to formulas of the form
𝑝 → 𝛿 , if moreover the distinguished variable 𝑝 that we are
eliminating also belongs to Δ.

Table 1. Excerpt of Pitts’ definitions of E(Δ) and A(Δ, 𝜙), with respect to a fixed variable 𝑝 .

Δ matches: E(Δ) contains:
𝐸1 Δ′ • 𝑞 𝐸 (Δ′) ∧ 𝑞

𝐸4 Δ′ • (𝑞 → 𝛿) 𝑞 → 𝐸 (Δ′ • 𝛿)
𝐸5 Δ′′ • 𝑝 • (𝑝 → 𝛿) 𝐸 (Δ′′ • 𝑝 • 𝛿)
𝐸6 Δ′ • (𝛿1 ∧ 𝛿2) → 𝛿3 𝐸 (Δ′ • (𝛿1 → (𝛿2 → 𝛿3)))
𝐸8 Δ′ • ((𝛿1 → 𝛿2) → 𝛿3) (𝐸 (Δ′ • (𝛿2 → 𝛿3)) → 𝐴(Δ′ • (𝛿2 → 𝛿3), 𝛿1 → 𝛿2)) → 𝐸 (Δ′ • 𝛿3)

Δ, 𝜙 matches: A(Δ, 𝜙) contains:
𝐴3 Δ′ • 𝛿1 ∨ 𝛿2, 𝜙 (𝐸 (Δ′ • 𝛿1) → 𝐴(Δ′ • 𝛿1, 𝜙)) ∧ (𝐸 (Δ′ • 𝛿2) → 𝐴(Δ′ • 𝛿2, 𝜙))
𝐴7 Δ′ • (𝛿1 ∨ 𝛿2) → 𝛿3, 𝜙 𝐴(Δ′ • (𝛿1 → 𝛿3) • (𝛿2 → 𝛿3), 𝜙)
𝐴8 Δ′ • ((𝛿1 → 𝛿2) → 𝛿3), 𝜙 (𝐸 (Δ′ • (𝛿2 → 𝛿3)) → 𝐴(Δ′ • (𝛿2 → 𝛿3), (𝛿1 → 𝛿2))) ∧𝐴(Δ′ • 𝛿3, 𝜙)
𝐴11 Δ, 𝜙1 ∧ 𝜙2 𝐴(Δ, 𝜙1) ∧𝐴(Δ, 𝜙2)
𝐴12 Δ, 𝜙1 ∨ 𝜙2 𝐴(Δ, 𝜙1) ∨𝐴(Δ, 𝜙2)
𝐴13 Δ, 𝜙1 → 𝜙2 𝐸 (Δ • 𝜙1, 𝜙2) → 𝐴(Δ • 𝜙1, 𝜙2)
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The fact that at most one of the 𝐸-rules applies to any
given formula 𝜃 ∈ Δ will allow us to define E𝑝 (Δ) by ap-
plying a function e_rule, defined below, to each element
𝜃 of Δ. If no rule applies to a chosen 𝜃 , for example, when
𝜃 is the distinguished variable 𝑝 , we will define the value
of e_rule to be ⊤. This ‘additional rule’ is harmless, as E
will subsequently be used in a big conjunction to define 𝐸,
so that any occurrences of ⊤ will be eliminated, using that
𝜙 ∧⊤ is equivalent to 𝜙 in IPC. On a related note, the reader
may notice that our definitions below use special symbols
⊼ , ⊻ and ⇁ instead of the usual ∧, ∨ and →. These sym-
bols are notations for functions that “optimize” these con-
nectives, namely, the functions make_conj, make_disj, and
make_impl, respectively, which already incorporate a few
obvious IPC-equivalences; see Section 6 below for more de-
tails on these optimizations.

We now first give the Coq definition of the e_rule func-
tion, which formalizes the rules for the 𝐸 quantifier. We
would like to eventually define 𝐸 (Δ) as map (e_rule EA)Δ,
with the implicit guarantee that EAwill only be called on in-
puts that are smaller than the current one.

The type of the function e_rule can thus be understood
as follows: it takes as implicit argument a pointed environ-
ment (Δ, 𝜙) and as first explicit argument a function EA0
which, we will assume recursively, already computes the
pair (𝐸 (Δ′), 𝐴(Δ′, 𝜙 ′)) for any pointed environment (Δ′, 𝜙 ′)
≺·-smaller than (Δ, 𝜙).

Thus, the argument EA0 will have the following depen-
dent type:

∀ pe (Hpe : pe ≺· (Δ, 𝜙)), form * form

Partially applying e_rule to these input data (Δ, 𝜙) and EA0,
we obtain a dependently typed function:

@e_rule Δ 𝜙 EA0 : ∀ 𝜃 : form, ∀ Hin : 𝜃 ∈ Δ, form

Source Code 1. The type of a partially applied E-rule
In the function that remains after partial application, the

argument 𝜃 is thought of as the ‘focus’ formula of one of the
𝐸 rules, Hin is the hypothesis that 𝜃 indeed appears in the
input environment, and the value computed by

@e_rule Δ 𝜙 EA0 𝜃 Hin

will then be the resulting formula that E(Δ) must contain
according to the relevant rule of Table 1. The reason why
@e_rule Δ 𝜙 EA0 must have this dependent type involv-
ing the additional parameter Hin, rather than just

∀ 𝜃 : form, form

will be explained at the end of this section, when we in-
troduce our dependent version of map. Also note that, com-
pared to Pitts’ pen-and-paper definition, e_rule is supplied
with an additional ‘dummy’ argument 𝜙 , which does not

play a role yet directly in Definition 4.1, but will be needed
to make the mutual induction in Definition 4.3 work.

Given the type of e_rule, we now list a significant part
of the Coq definition of the function e_rule.

Definition 4.1 (E rule).
Program Definition e_rule {Δ : env} {𝜙 : form}

(EA0 : ∀ pe (Hpe : pe ≺· (Δ, 𝜙)), form * form)
(𝜃: form) (Hin : 𝜃 ∈ Δ) : form

:=

let E Δ H := fst (EA0 (Δ, 𝜙) H) in
let A pe0 H := snd (EA0 pe0 H) in
let Δ' := Δ \ {[𝜃]} in

match 𝜃 with
(* E1 *)
| Var q => if decide (p = q) then ⊤

else E Δ' _ ⊼ q (* E1 *)
(* E2, E3 omitted *)
| Var q → 𝛿 =>

if decide (p = q) then
if decide (Var p ∈ Δ) then

E (Δ' • 𝛿) _ (* E5 *)
else

⊤
else q ⇁ E (Δ' • 𝛿) _ (* E4 *)

(* E6 *)
| (𝛿1 ∧ 𝛿2) → 𝛿3 => E (Δ' • (𝛿1 → (𝛿2 → 𝛿3))) _
(* E7 omitted *)
(* E8 *)
| ((𝛿1 → 𝛿2) → 𝛿3) =>

(E (Δ' • (𝛿2 → 𝛿3)) _
⇁ A (Δ' • (𝛿2 → 𝛿3), 𝛿1 → 𝛿2) _)
⇁ E (Δ' • 𝛿3) _

(* a few trivial cases omitted *)
end.

Note that Δ′ in the Coq code corresponds to Δ′′•𝑝 in rule
𝐸5 as written in Table 1.The implementation of rule 𝐸8, prob-
ably the most complex 𝐸-rule, shows an instance where, to
calculate the value on an input of the form Δ = Δ′ • ((𝛿1 →
𝛿2) → 𝛿3), the function A is called on the pointed environ-
ment (Δ′ • (𝛿2 → 𝛿3), 𝛿1 → 𝛿2). This pointed environment
is provably ≺· Δ •𝜙 , which allows to convince Coq that the
recursive call is valid.

Essentially the same implementation technique is used
for the rules𝐴1 to𝐴8 and𝐴10 in [17, Table 5], with𝐴5 is anal-
ogous to 𝐸5, and here ⊥ is used when no rule applies; we re-
fer to the source code for the full implementation. However,
looking at rules 𝐴11 to 𝐴13 in Table 1, one notices that they
do not depend on the content of Δ, but rather on the shape
of the second argument 𝜙 . We split off the implementation
for these rules in a separate function a_rule_form, also see
Definition 4.2 below. In listing the following definitions, we
omit the implementations of 𝐴1, 𝐴2, 𝐴4, 𝐴5, 𝐴6 and 𝐴10.

Definition 4.2 (A rule with focus on a formula).
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Program Definition a_rule_form {Δ : env} {𝜙 : form}
(EA0 : ∀ pe (Hpe : pe ≺· (Δ, 𝜙)), form * form)
: form :=

let E pe0 H := fst (EA0 pe0 H) in
let A pe0 H := snd (EA0 pe0 H) in

match 𝜙 with
| Var q =>

if decide (p = q) then ⊥
else Var q (* A9 *)
(* A11 *)

| 𝜙1 ∧ 𝜙2 => A (Δ, 𝜙1) _ ⊼ A (Δ, 𝜙2) _
(* A12 *)

| 𝜙1 ∨ 𝜙2 => A (Δ, 𝜙1) _ ⊻ A (Δ, 𝜙2) _
(* A13 *)

| 𝜙1 → 𝜙2 => E (Δ • 𝜙1, 𝜙2) _ ⇁ A (Δ • 𝜙1, 𝜙2) _
| Bot => ⊥
end.

Definition 4.3 (Definition of E and A).
Program Fixpoint EA (pe : env * form)
{wf pointed_env_order pe} :=
let Δ := fst pe in
(
∧

(in_map Δ (e_rule EA)),∨
(in_map Δ (a_rule_env EA)) ⊻ a_rule_form EA).

Next Obligation. apply wf_pointed_order. Defined.

Definition E pe := (EA pe).1.
Definition A pe := (EA pe).2.

Note that Definition 4.3 defines 𝐸 and 𝐴 for any pointed
environment. As in [17], we can now in particular define 𝐸
and 𝐴 on formulas as follows:
Definition Ef (𝜓 : form) := E ({[𝜓]}, ⊥)
Definition Af (𝜓 : form) := A ( ∅ , 𝜓)

ProvingTermination. Informally speaking, the termina-
tion of the function EA of Definition 4.3 is ensured by the
fact that each recursive call is obtained by the application
of one of the rules, which creates only recursive calls on
inputs that are ≺· than the pointed environment currently
under examination. With only a constant number of recur-
sive calls, we could have defined E andA as bouded unions
and disjunctions, and Coq’s Program scheme would have
produced as many proof obligations to ensure that the calls
are made on inputs that are lower in the order ≺·. However,
we here require a big conjunction (resp. disjunction) over a
set of formulas, so this approach did not directly work.

The pervasive underscores in Definitions 4.1 and 4.2 are
placeholders for a proof that the pointed environment im-
mediately to its left is indeed smaller than the pointed en-
vironment (Δ, 𝜙) which is the function’s first argument. In-
stead of hardcoding these proofs as terms, and in order to
keep the proof readable and close to the original tabular
definition, we use the Program scheme so that Coq gener-
ates proof obligations for each of these placeholders, and

proves them using tactics. All these proof obligations are of
the form:

Δ \ {𝜃 } • 𝜃1 • . . . • 𝜃𝑛 ≺ Δ

where 0 ≤ 𝑛 ≤ 2. We solve all of them using a single tactic
which first, turns such a goal into

Δ \ {𝜃 } ⊎ {𝜃1, . . . , 𝜃𝑛} ≺ Δ \ {𝜃 } • 𝜃

then applies the multiset ordering definition so that we only
obtain goals of the form 𝑤𝑒𝑖𝑔ℎ𝑡 (𝜃𝑖 ) < 𝑤𝑒𝑖𝑔ℎ𝑡 (𝜃 ), which
are easily proven with the linear arithmetic solver lia. This
reasoning is only valid under the assumption 𝜃 ∈ Δ, which
is why we provided it to each of the rule functions.

A Dependent Version of map. We finally explain a last
ingredient of Definition 4.3, namely, the function in_map.
Recall that, informally, the definition of the set E can be
understood as follows:

“If the environment Δ contains a certain formula 𝜃 , then
the set E will contain a formula e_rule EA 𝜃 , which is
built by calling EA recursively on an environment of the
form (Δ \ {𝜃 }) ⊎Θ, where each element of Θ has strictly
smaller weight than 𝜃 .”
However, to be able to prove to Coq that, here, it is the

case that
Δ \ {𝜃 } ⊎ Θ ≺ Δ,

which is what allows us to perform the required recursive
call on EA0, requires the additional hypothesis that 𝜃 ∈ Δ.
This is whywe added an additional argument Hin : 𝜃 ∈ Δ
to the definitions of e_rule and a_rule_env above, as we
mentioned above when discussing Source Code 1.

This now leads to a different problem. In the definition of
EA (Definition 4.3), it would be nice to be able to say that the
set E(Δ) is simply defined by applying map (e_rule EA)
to Δ. However, the usual map function of course has simple
type

map : (A -> B) -> list A -> list B,

while our definition instead requires a function of depen-
dent type
∀ (Γ : list A), ∀ (f : ∀ a, (In a Γ) -> B), list B.

This is why we define a function that we call in_map, a
dependent version of map. Our definition is in the special
context of environments and formulas, but it is clear how
this could be generalized to lists and the above dependent
type. Our definition satisfies the following specification:

Proposition 4.4. If A is a type with decidable equality, then
for any environment Γ and any function f of dependent type
∀ a, (In a Γ) -> A, if a formula𝜓 is in in_map Γ f then
there is some formula 𝜙 and a proof Hin: 𝜙 ∈ Γ such that
𝜓 = f 𝜙 Hin. Conversely, if 𝜙 is in Γ, then f 𝜙 Hin is in
in_map Γ f for some proof Hin: 𝜙 ∈ Γ.
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5 The Correctness Proof
Having defined candidate formulas 𝐸𝑝𝜙 (in Coq, Ef p 𝜙)
and𝐴𝑝𝜙 (in Coq, Af p 𝜙) in the previous section, it remains
to prove that they are indeed correct, i.e., that they satisfy
the statement ofTheorem 2.1.The correctness proof consists
in proving the following three properties of the formulas
𝐸𝑝𝜙 and 𝐴𝑝𝜙 (cf. [17, Prop. 5]):
1. The variables in 𝐸𝑝𝜙 and 𝐴𝑝𝜙 are in 𝑉 (𝜙) \ {𝑝};
2. The sequents 𝜙 ⊢ 𝐸𝑝𝜙 and 𝐴𝑝𝜙 ⊢ 𝜙 are provable;
3. 𝐸𝑝𝜙 is minimal and 𝐴𝑝𝜙 is maximal for ⊢.
Our Coq development in fact proves three more general

statements than the three items above, namely EA_vars, en-
tail_correct, and pq_correct, respectively, which hold in the
general context of 𝐸 and𝐴 applied to pointed environments
instead of formulas. This is necessary since the inductive
proofs work at this level. Our final result pitts then special-
izes them to the formulas Ef p 𝜙 and Af p 𝜙 .

The result EA_vars is proved by induction on the well-
founded order ≺. Thanks to our modular definition, we first
prove separately that the three rule-sets build formulas that
do not introduce new variables, and eliminate all occurren-
ces of the variable 𝑝 , assuming that the recursively given
argument EA0 does so, too. Then, the result follows easily
by induction, as 𝐸 (Δ) and𝐴(Δ, 𝜙) are defined as generalised
conjunctions and disjunctions of the formulas produced by
these rule-sets.

For the second item, recall 𝐸𝑝𝜙 is defined as
∧ E𝑝 ({𝜙}).

Thus, proving the sequent 𝜙 ⊢ 𝐸𝑝 (Δ) amounts to proving
that 𝜙 ⊢ 𝜓 for each 𝜓 ∈ E𝑝 (Δ). Similarly, 𝐴𝑝 (Δ, 𝜙) is de-
fined as a disjunction, and we proving that Δ, 𝐴𝑝 (Δ, 𝜙) ⊢ 𝜙
amounts to proving Δ,𝜓 ⊢ 𝜙 for every 𝜓 ∈ A𝑝 (Δ, 𝜙). This
item is therefore proved once again by induction on thewell-
founded order, following the definition of EA, using a case
distinction on what Δ matches in the case of 𝐸, and what
Δ, 𝜙 matches in the case of𝐴. The proof here strongly relies
on some admissibility results from Dyckhoff and Negri [8]
mentioned at the end of Section 3, like weakening, and the
following proposition, which follows from admissibility of
contraction, and may be viewed as special case of admissi-
bility of cut on an implication.

Proposition 5.1 ([8], Prop 5.3).
∀ 𝜙 Γ 𝜓 𝜃, Γ • (𝜙 → 𝜓) ⊢ 𝜃 -> Γ • 𝜓 ⊢ 𝜃.

Finally, the last item, pq_correct, is a special case of the
following:

Proposition 5.2 (Uniformity of E and A). Let Γ be an envi-
ronment not containing the variable 𝑝 , let Δ be any environ-
ment and 𝜙 a formula such that

Γ ⊎ Δ ⊢ 𝜙.
The following two properties hold:

1. if 𝑝 does not occur in 𝜙 , then Γ • 𝐸 (Δ, 𝜙) ⊢ 𝜙 ,
2. Γ • 𝐸 (Δ, 𝜙) ⊢ 𝐴(Δ, 𝜙).

It is the most difficult of the three, mainly as it is proved
by a dependent induction on the structure of the proof of
Γ⊎Δ ⊢ 𝜙 .There are indeed 12 rules forG4ip, and two deriva-
tions to build in each case, leading to about 200 lines of tac-
tics. Most of the cases are quite simple though, and simply
consist in the application of a few derivation rules, followed
by the application of the induction hypotheses. The case for
ImpLVar however is rather involved and is split into several
subcases, depending onwhether the principal formula is the
distinguished variable 𝑝 or not, and how the two formulas
Var p and Var p → 𝜙 are split between the environments
Γ and Δ. Despite this abundance of cases, the proof follows
exactly the structure of the original paper proof.

6 Extraction and Optimisations
Extraction. Coq’s extraction mechanism provides a sim-

ple way to produce OCaml source code from a formal Coq
development. In our case, this mechanism allows us to au-
tomatically compute the values of propositional quantifiers
on arbitrary examples of formulas. The OCaml code we ex-
tract from our Coq proof thus contains two functions of type
form -> form implementing Ef and Af. The source code
we release with this paper contains build instructions for
the extraction to an OCaml library, as well as some boiler-
plate OCaml code illustrating how to use the library. The
library allows one to experiment with propositional quan-
tifiers, and possibly to confirm or refute conjectures about
them; we mention some first steps below.

Basic Efficiency Evaluation and Complexity Analy-
sis. First, the computation works very efficiently for most
small formulas. This was not obvious from the start, since
computational complexity aspects were not considered in
the original paper [17], and we did not particularly focus
on having an efficient implementation in the proof stage;
rather, our development was designed to be faithful to the
definitions on paper, and convenient for use in formal proofs.
In particular, the choice of environments as multisets from
the std++ adds many abstraction layers and induces inef-
ficient conversions between data structures. However, our
tests show that the main efficiency bottleneck is not here,
but rather in the details of Pitts’ algorithm itself.

Indeed, we can first notice that some formula patterns
will trigger more recursive calls than others. This is in par-
ticular true for rules 𝐸8 and 𝐴8 which produce three recur-
sive calls each, when the distinguished formula is of the
form (𝜃1 → 𝜃2) → 𝜃3. It is not directly obvious to antici-
pate the computation time, or even the recursion depth, as
it not based on a direct measure of the input formula, but
on the multiset ordering. However, it is clear that the depth
of implications plays a crucial role here. More precisely, a
naïve implementation of Pitts’ quantifiers has to make at
least 3𝑑 nested recursive calls if𝑑 is the left-most implication
depth of the input formula. Performing tests on the simple

155

https://ipqcoq.github.io/doc/Pqf.PropQuantifiers.html#EA_vars
https://ipqcoq.github.io/doc/Pqf.PropQuantifiers.html#entail_correct
https://ipqcoq.github.io/doc/Pqf.PropQuantifiers.html#pq_correct
https://ipqcoq.github.io/doc/Pqf.PropQuantifiers.html#EA_vars
https://ipqcoq.github.io/doc/Pqf.PropQuantifiers.html#entail_correct
https://ipqcoq.github.io/doc/Pqf.PropQuantifiers.html#entail_correct
https://ipqcoq.github.io/doc/Pqf.PropQuantifiers.html#pq_correct
https://ipqcoq.github.io/doc/Pqf.PropQuantifiers.html#pitts
https://ipqcoq.github.io/doc/Pqf.PropQuantifiers.html#EA_vars
https://ipqcoq.github.io/doc/Pqf.SequentProps.html#contraction
https://ipqcoq.github.io/doc/Pqf.SequentProps.html#imp_cut
https://ipqcoq.github.io/doc/Pqf.PropQuantifiers.html#pq_correct
https://ipqcoq.github.io/doc/Pqf.PropQuantifiers.html#pq_correct
https://ipqcoq.github.io/release.tar.gz


Formalizing and Computing Propositional Quantifiers CPP ’23, January 16–17, 2023, Boston, MA, USA

Table 2. Experimental results on computations of proposi-
tional quantifiers for the sequence of formulas 𝜙𝑛 defined in
(1). The ‘orig.’ columns contain the original weights, and the
‘opt.’ columns the weight after the optimisations described
in Section 6. ‘SO’ means stack overflow.

𝑛 weight(𝜙𝑛) weight(𝐸𝑝0𝜙𝑛) weight(𝐴𝑝0𝜙𝑛)
orig. opt. orig. opt.

1 3 8 3 22 5
2 5 188 28 22 5
3 7 188 28 387 62
4 9 8376 1447 387 62
5 11 8376 1447 16763 2900
6 13 SO 152137 16763 2900

sequence of formulas

𝜙0 := 𝑝0, 𝜙𝑛+1 := 𝜙𝑛 → 𝑝𝑛+1 (1)

shows empirically that already for small values of 𝑛, the
weight of the resulting formulas computed by our program,
and thus also the computation time, blow up dramatically;
see Table 2. Note that the numbers in this table only give a
upper bound on how complex the propositionally quantified
formulas need to be, by showing the weight of the formula
computed by our program.We leave to futurework the ques-
tion of examining how these formulas might be simplified
to smaller, IPC-equivalent formulas. We also note in pass-
ing that a semantic proof of Pitts’ Theorem, such as the one
in [10], may be simpler to formalize, but would probably
compute even larger formulas and thus be less efficient for
the purpose of actual computation; further see Section 7.

Optimizations. After running a few tests, it is easy to
see that many produced formulas could be easily simplified.
Although efficiency was not our main concern, we have im-
plemented some easy improvements that did not harm the
shape of the construction, and minimizing the amount of
changes in the formal proof. For this, we have replaced syn-
tactic conjunction, disjunction and implication symbols (see
Definitions 4.1, 4.2, and 4.3) with functions ⊼ , ⊻ and ⇁
which produce potentially smaller, butG4ip-equivalent for-
mulas by taking advantage of the properties of the neutral
and absorbent elements (i.e. ⊥ and ⊤) of the ∧, ∨ and →
constructors, as well as idempotency properties. For exam-
ple, for any formula 𝜙 , 𝜙⊼⊤ = 𝜙 , 𝜙⊼⊥ = ⊥ and 𝜙⊼𝜙 = 𝜙 .
This is especially useful in order for rules to produce sim-
pler formulas, but also when building E and A. Indeed, the
‘big conjunction’ that we use to build the formula 𝐸𝑝 (Δ) is
actually defined as∧

𝑙
def
= foldl ⊼ ⊤ (nodup 𝑙),

i.e., it removes duplicates in the list of formulas 𝑙 , and folds
them with ⊼. In other words, we often produce equivalent,

smaller formulas and above all we avoid making unneces-
sary costly recursive calls, thus gaining both on output shape
and computation time. By proving in G4ip that the output
of such a function is equivalent to its standard counterparts,
the correctness proofs for the quantifiers still work in essen-
tially the sameway. Of course, this is only a proof of concept
for the benefit of anyone interested in this aspect, and more
optimisations of this shape could be added. In this direction,
a more structural approach would be to prove a statement
of the form: if 𝐸1 is a correct definition of the formula ∃𝑝𝜙 ,
and 𝐸2 is provably equivalent to 𝐸1, then 𝐸2 is also a correct
definition of ∃𝑝𝜙 ; and similarly for ∀𝑝 . These statements are
easy to prove on paper but we did not yet formalize them.

We briefly note some further potential performance op-
timizations for the extracted OCaml program that we have
not yet implemented. First, it may be beneficial to usememo-
ization of previously calculated results, especially after nor-
malization of the inputs. A final simple, but somewhat triv-
ial, optimization would be to first check if 𝑝 appears at all in
the formula𝜙 . If it does not, then𝜙 itself already realizes the
properties we require of both 𝐸𝑝 (𝜙) and 𝐴𝑝 (𝜙). This test is
linear in the size of 𝜙 and can avoid a potentially exponen-
tial computation.

7 Conclusions and Future Work
In this paper, we reported on our mechanization in Coq of a
process for encoding propositional quantifiers for formulas
of intuitionistic propositional logic within the syntax of IPC
itself, with a formally verified correctness proof, based on
the paper proof [17]. In the process, we also formalized the
notion of provability in the sequent calculus G4ip and the
proofs from [8] of the admissibility of various rules in this
calculus, including contraction and a restricted form of cut.
Moreover, the extracted OCaml program provides an imple-
mentation of the computation of propositional quantifiers,
making it possible for the first time to experimentally inves-
tigate open questions regarding propositionally quantified
formulas and their complexity, since by-hand computations
quickly turn infeasible.

An obvious first direction for future work is to also im-
plement the admissibility of the cut rule, and the explicit al-
gorithm for eliminating cuts in the calculus G4ip [8, Sec. 6].
We did not need cut-admissibility for the main result of this
paper, but having a formalization of it would be a main
step towards connecting it explicitly to other proof calculi
for IPC, notably LJ. This would also enable us to formalize
some further corollaries of Pitts’ theorem, notably the uni-
form interpolation theorem. This theorem states that, for any
𝜙 ∈ 𝐹 (𝑉 ∪ {𝑝}) and for any formulas 𝜓, 𝜃 not containing 𝑝
but possibly containing other atomic propositions that are not
in 𝑉 , if 𝜙 ⊢ 𝜓 then ∃𝑝𝜙 is a formula such that 𝜙 ⊢ ∃𝑝𝜙 ⊢ 𝜓
and if𝜃 ⊢ 𝜙 then∀𝑝𝜙 is a formula such that𝜃 ⊢ ∀𝑝𝜙 ⊢ 𝜙 .This
result in addition requires Craig’s interpolation property for
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intuitionistic logic, which has previously been formalized in
Coq using the calculus LJ [2], but not using G4ip.

While we regard the formalization in Coq of Theorem 2.1
and the extracted program computing propositional quan-
tifiers as important milestones, some improvements to our
formalization are clearly still possible. In the current ver-
sion, we did not yet fully separate the abstraction layer of
multisets from its syntactic implementation. For example, in
our current development, it is not automatically recognized
that, when Γ is a multiset and 𝜙 ∈ Γ multisets Γ, then Γ is
the same multiset as (Γ \ {𝜙}) •𝜙 . This type of phenomenon
made it necessary to develop various custom tactics that are
just permuting the elements of a multiset, in order to bring
the appropriate elements “forward” and “backward” for use
in a sequent proof. We conjecture that in a future version
these tactics could be replaced by defining an appropriate
Setoid and thus making “obvious” equalities of multisets
transparent in the formalization.

An additional possible improvement, which occurred to
us only when we were already in the final stages of the for-
malization work, is that the use of the Dershowitz-Manna
theorem (Theorem 3.3 above) might be avoided by introduc-
ing a more refind notion of weight on multisets. This im-
provement relies on an observation on the calculus G4ip
and its use in Pitts’ proof, namely, that any multiset that oc-
curs in the hypothesis of a rule is not only ≺· than the mul-
tiset in the conclusion, but that the size of the difference
between the two multisets can in fact explicitly bounded
(by 2). We leave it to future work to implement this im-
provement and to examine whether it also enhances the
performance and complexity of the extracted OCaml pro-
gram. As a methodological point, we believe this improve-
ment will provide an interesting and typical example of find-
ing an improvement to a theoretical, pen-and-paper proce-
dure through the activity of formalizing it in a proof assis-
tant.

As it stands, our construction of Pitts’ quantifiers here
is clearly very sensitive to the precise proof calculus that
is used, and as such, it looks like a fairly special result, al-
though a fundamental one. In recent work, Iemhoff [14] gen-
eralizes Pitts’ result on the existence of propositional quan-
tifiers to proof calculi for substructural logics, and obtains
a result of the form: if a so-called “centered” proof calculus
exists for a logic 𝐿, then 𝐿 admits the encoding of proposi-
tional quantifiers in its syntax. Iemhoff applies this result to
show the impossibility of designing sequent calculi for var-
ious intuitionistic modal logics. It would be interesting to
similarly generalize our Coq formalization of Pitts’ theorem
to give an encoding of propositional quantifiers parametric
in an arbitrary centered calculus, thus mechanizing and for-
malizing Iemhof’s result.

It is well-known that proofs in the Gentzen calculus LJ
correspond to terms in simply typed 𝜆-calculus through the

Curry-Howard isomorphism. Other sequent calculi for in-
tuitionistic logic have also been shown to correspond to 𝜆-
terms [11], and although we are not aware of an explicit
such encoding forG4ip, our formalization in Coq of the cal-
culus shows that such an encoding is possible in the calculus
of inductive constructions. This encoding gives, for any in-
tuitionistic formula 𝐴, a set of 𝜆-terms of type 𝐴 that are
encodings of G4ip-proofs of 𝐴. Pitts’ theorem in particular
yields a construction that maps any such G4ip-term to a
G4ip-term of type ∃𝑝𝐴. A curious question to be investi-
gated further, then, is what the correct type-theoretic inter-
pretation of Pitts’ theorem should be. In particular, is there
a sense in which the Pitts’ propositional quantifiers give a
proof-irrelevant version of the quantification over types of
Girard’s system F? And if so, what is the proof-relevant ver-
sion of Pitts’ theorem?2

Finally, Pitts’ theorem for IPC is closely related to the
existence of adjoints for homomorphisms between finitely
presented Heyting algebras, as already noticed in [17] and
much further explored in [10]. This algebraic interpretation
of the statement of Pitts’ theorem leads, in [10], to a se-
mantic proof of the existence of propositional quantifiers,
which involves an intricate construction on Kripke frames.
The bounds on the complexity of the propositional quan-
tifier obtained by this alternative proof method are worse
than those given by the proof-theoretic method followed in
this paper. However, it remains to be seen how easy or dif-
ficult it would be to formalize the semantic-style proof in a
proof assistant.
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