Pqf.SequentProps

Require Import Pqf.Sequents.

(* Required for dependent induction. *)
Require Import Coq.Program.Equality.

Overview: admissible rules in G4ip sequent calculus

This file contains important properties of the sequent calculus G4ip, defined in Sequents.v, namely the admissibility of various inversion rules, weakening and contraction. We draw various consequences from this that are used extensively in the proof of correctness of propositional quantifiers. The first part of this file closely follows proof in the paper:
(Dyckhoff and Negri 2000). R. Dyckhoff and S. Negri, Admissibility of Structural Rules for Contraction-Free Systems of Intuitionistic Logic, Journal of Symbolic Logic (65):4.

Weakening

We prove the admissibility of the weakening rule.

Theorem weakening φ' Γ φ : Γ φ -> Γφ' φ.
Proof with (auto with proof).
intro H. induction H; auto with proof; try (exch 0; auto with proof).
- constructor 4. exch 1; exch 0...
- constructor 7; exch 0...
- constructor 8; exch 0...
- exch 1; constructor 9; exch 1; exch 0...
- constructor 10; exch 0...
- constructor 11. exch 1; exch 0...
- constructor 12; exch 0...
Qed.

Global Hint Resolve weakening : proof.

Theorem generalised_weakeningL (Γ Γ' : env) φ: Γ φ -> Γ' Γ φ.
Proof.
intro Hp.
induction Γ' as [| x Γ' IHΓ'] using gmultiset_rec.
- peapply Hp.
- peapply (weakening x). exact IHΓ'. ms.
Qed.

Theorem generalised_weakeningR (Γ Γ' : env) φ: Γ' φ -> Γ' Γ φ.
Proof.
intro Hp.
induction Γ as [| x Γ IHΓ] using gmultiset_rec.
- peapply Hp.
- peapply (weakening x). exact IHΓ. ms.
Qed.

Global Hint Extern 5 (?a <= ?b) => simpl in *; lia : proof.

Inversion rules

We prove that the following rules are invertible: implication right, and left, or left, top left (i.e., the appliction of weakening for the formula top), the four implication left rules, the and right rule and the application of the or right rule with bottom.

Lemma ImpR_rev Γ φ ψ :
  (Γ (φ ψ))
    -> Γφ ψ.
Proof with (auto with proof).
intro Hp. dependent induction Hp; auto with proof; try exch 0.
- constructor 4. exch 1; exch 0...
- constructor 7; exch 0...
- exch 1; constructor 9; exch 1; exch 0...
- constructor 10; exch 0...
- constructor 11. exch 1; exch 0...
- constructor 12; exch 0...
Qed.

Global Hint Resolve ImpR_rev : proof.

Lemma AndL_rev Γ φ ψ θ: (Γφ ψ) θ (Γφψ) θ.
Proof.
intro Hp.
remember (Γφ ψ) as Γ' eqn:HH.
assert (Heq: Γ Γ' {[ φ ψ ]}) by ms.
assert(Hin : (φ ψ) Γ')by ms.
rw Heq 2. clear Γ HH Heq.
(* we massaged the goal so that the environment of the derivation on which we do
   the induction is not composite anymore *)

induction Hp; try forward; auto with proof.
(* auto takes care of the right rules easily *)
(* the main case *)
- case(decide ((φ ψ) = (φ0 ψ0))); intro Heq0.
  + inversion Heq0; subst. peapply Hp.
  + forward. constructor 4. exch 0. backward. backward. apply IHHp. ms.
(* only left rules remain. Now it's all a matter of putting the right principal
   formula at the front, apply the rule; and put back the front formula at the back
   before applying the induction hypothesis *)

- constructor 7; backward; [apply IHHp1 | apply IHHp2]; ms.
- constructor 8. backward. apply IHHp. ms.
- forward. exch 0. constructor 9. exch 0. do 2 backward. apply IHHp. ms.
- constructor 10. backward. apply IHHp. ms.
- constructor 11. exch 0. do 2 backward. apply IHHp. ms.
- constructor 12; backward.
  + apply IHHp1. ms.
  + apply IHHp2. ms.
Qed.

Lemma OrL_rev Γ φ ψ θ: (Γφ ψ) θ (Γφ θ) * (Γψ θ).
Proof.
intro Hp.
remember (Γφ ψ) as Γ' eqn:HH.
assert (Heq: Γ Γ' {[ φ ψ ]}) by ms.
assert(Hin : (φ ψ) Γ')by ms.
assert(Heq' : ((Γ' {[φ ψ]}φ) θ) * ((Γ' {[φ ψ]}ψ) θ));
[| split; rw Heq 1; tauto].
clear Γ HH Heq.
induction Hp.
- split; forward; auto with proof.
- split; forward; auto with proof.
- split; constructor 3; intuition.
- split; forward; constructor 4; exch 0; do 2 backward; apply IHHp; ms.
- split; constructor 5; intuition.
- split; apply OrR2; intuition.
- case (decide ((φ0 ψ0) = (φ ψ))); intro Heq0.
  + inversion Heq0; subst. split; [peapply Hp1| peapply Hp2].
  + split; forward; constructor 7; backward; (apply IHHp1||apply IHHp2); ms.
- split; constructor 8; backward; apply IHHp; ms.
- split; do 2 forward; exch 0; constructor 9; exch 0; do 2 backward; apply IHHp; ms.
- split; forward; constructor 10; backward; apply IHHp; ms.
- split; forward; constructor 11; exch 0; do 2 backward; apply IHHp; ms.
- split; forward; constructor 12; backward; (apply IHHp1 || apply IHHp2); ms.
Qed.

Lemma TopL_rev Γ φ θ: Γ•( φ) θ -> Γ θ.
Proof.
remember (Γ•( φ)) as Γ' eqn:HH.
assert (Heq: Γ Γ' {[ φ ]}) by ms.
assert(Hin : ( φ) Γ')by ms. clear HH.
intro Hp. rw Heq 0. clear Γ Heq. induction Hp;
try forward; auto with proof.
- constructor 4. exch 0. backward. backward. apply IHHp. ms.
- constructor 7; backward; [apply IHHp1 | apply IHHp2]; ms.
- constructor 8. backward. apply IHHp. ms.
- forward. exch 0. constructor 9. exch 0. backward. backward. apply IHHp. ms.
- constructor 10. backward. apply IHHp. ms.
- constructor 11. exch 0. backward. backward. apply IHHp. ms.
- constructor 12; backward; [apply IHHp1 | apply IHHp2]; ms.
Qed.

Local Hint Immediate TopL_rev : proof.

Lemma ImpLVar_rev Γ p φ ψ: (ΓVar p•(p φ)) ψ (ΓVar pφ) ψ.
Proof.
intro Hp.
remember (ΓVar p•(p φ)) as Γ' eqn:HH.
assert (Heq: (ΓVar p) Γ' {[Var p φ]}) by ms.
assert(Hin : (p φ) Γ')by ms.
rw Heq 1. clear Γ HH Heq.
induction Hp; try forward; auto with proof.
- apply AndL. exch 0. do 2 backward. apply IHHp. ms.
- apply OrL; backward; apply IHHp1 || apply IHHp2; ms.
- apply ImpR. backward. apply IHHp. ms.
- case (decide ((Var p0 φ0) = (Var p φ))); intro Heq0.
  + inversion Heq0; subst. peapply Hp.
  + do 2 forward. exch 0. apply ImpLVar. exch 0; do 2 backward. apply IHHp. ms.
- apply ImpLAnd. backward. apply IHHp. ms.
- apply ImpLOr. exch 0; do 2 backward. apply IHHp. ms.
- apply ImpLImp; backward; (apply IHHp1 || apply IHHp2); ms.
Qed.

(* inversion for ImpLImp is only partial *)
Lemma ImpLImp_prev Γ φ1 φ2 φ3 ψ: (Γ•((φ1 φ2) φ3)) ψ -> (Γφ3) ψ.
Proof.
intro Hp.
remember (Γ •((φ1 φ2) φ3)) as Γ' eqn:HH.
assert (Heq: Γ Γ' {[ ((φ1 φ2) φ3) ]}) by ms.
assert(Hin :((φ1 φ2) φ3) Γ')by ms.
rw Heq 1. clear Γ HH Heq.
induction Hp; try forward; auto with proof.
- apply AndL. exch 0; do 2 backward. apply IHHp. ms.
- apply OrL; backward; [apply IHHp1 | apply IHHp2]; ms.
- apply ImpR. backward. apply IHHp. ms.
- forward. exch 0. apply ImpLVar. exch 0. do 2 backward. apply IHHp. ms.
- apply ImpLAnd. backward. apply IHHp. ms.
- apply ImpLOr. exch 0. do 2 backward. apply IHHp. ms.
- case (decide (((φ0 φ4) φ5) = ((φ1 φ2) φ3))); intro Heq0.
  + inversion Heq0; subst. peapply Hp2.
  + forward. apply ImpLImp; backward; (apply IHHp1 || apply IHHp2); ms.
Qed.

Lemma ImpLOr_rev Γ φ1 φ2 φ3 ψ: Γ•((φ1 φ2) φ3) ψ -> Γ•(φ1 φ3)•(φ2 φ3) ψ.
Proof.
intro Hp.
remember (Γ •((φ1 φ2) φ3)) as Γ' eqn:HH.
assert (Heq: Γ Γ' {[ ((φ1 φ2) φ3) ]}) by ms.
assert(Hin :((φ1 φ2) φ3) Γ')by ms.
rw Heq 2. clear Γ HH Heq.
induction Hp; try forward; auto with proof.
- constructor 4. exch 0; do 2 backward. apply IHHp. ms.
- constructor 7; backward; [apply IHHp1 | apply IHHp2]; ms.
- constructor 8. backward. apply IHHp. ms.
- forward. exch 0. constructor 9. exch 0. do 2 backward. apply IHHp. ms.
- constructor 10. backward. apply IHHp. ms.
- case (decide (((φ0 φ4) φ5) = ((φ1 φ2) φ3))); intro Heq0.
  + inversion Heq0; subst. peapply Hp.
  + forward. constructor 11; exch 0; do 2 backward; apply IHHp; ms.
- constructor 12; backward; (apply IHHp1 || apply IHHp2); ms.
Qed.

Lemma ImpLAnd_rev Γ φ1 φ2 φ3 ψ: (Γ•(φ1 φ2 φ3)) ψ -> (Γ•(φ1 φ2 φ3)) ψ .
Proof.
intro Hp.
remember (Γ •((φ1 φ2) φ3)) as Γ' eqn:HH.
assert (Heq: Γ Γ' {[ ((φ1 φ2) φ3) ]}) by ms.
assert(Hin :((φ1 φ2) φ3) Γ')by ms.
rw Heq 1. clear Γ HH Heq.
induction Hp; try forward; auto with proof.
- constructor 4. exch 0; do 2 backward. apply IHHp. ms.
- constructor 7; backward; [apply IHHp1 | apply IHHp2]; ms.
- constructor 8. backward. apply IHHp. ms.
- forward. exch 0. constructor 9. exch 0. do 2 backward. apply IHHp. ms.
- case (decide (((φ0 φ4) φ5) = ((φ1 φ2) φ3))); intro Heq0.
  + inversion Heq0; subst. peapply Hp.
  + forward. constructor 10. backward. apply IHHp. ms.
- constructor 11; exch 0; do 2 backward; apply IHHp; ms.
- constructor 12; backward; (apply IHHp1 || apply IHHp2); ms.
Qed.

Global Hint Resolve AndL_rev : proof.
Global Hint Resolve OrL_rev : proof.
Global Hint Resolve ImpLVar_rev : proof.
Global Hint Resolve ImpLOr_rev : proof.
Global Hint Resolve ImpLAnd_rev : proof.

This is Lemma 3.2 in (Dyckhoff & Negri 2000).
Theorem generalised_axiom Γ φ : Γφ φ.
Proof with (auto with proof).
remember (weight φ) as w.
assert(Hle : weight φ w) by lia.
clear Heqw. revert Γ φ Hle.
induction w; intros Γ φ Hle.
- destruct φ; simpl in Hle; lia.
- destruct φ; simpl in Hle...
  destruct φ1 as [v| | θ1 θ2 | θ1 θ2 | θ1 θ2].
  + constructor 8. exch 0...
  + auto with proof.
  + apply ImpR, AndL. exch 1; exch 0. apply ImpLAnd.
    exch 0. apply ImpR_rev. exch 0...
  + apply ImpR. exch 0. apply ImpLOr.
    exch 1; exch 0...
  + apply ImpR. exch 0...
Qed.

Global Hint Resolve generalised_axiom : proof.

Lemma exfalso Γ φ: Γ -> Γ φ.
Proof.
intro Hp. dependent induction Hp; try tauto; auto with proof; tauto.
Qed.

Global Hint Immediate exfalso : proof.

Lemma AndR_rev {Γ φ1 φ2} : Γ φ1 φ2 -> (Γ φ1) * (Γ φ2).
Proof. intro Hp. dependent induction Hp generalizing φ1 φ2 Hp; intuition; auto with proof. Qed.

A general inversion rule for disjunction is not admissible. However, inversion holds if one of the formulas is ⊥.

Lemma OrR1Bot_rev Γ φ : Γ φ -> Γ φ.
Proof. intro Hd. dependent induction Hd; auto with proof. Qed.
Lemma OrR2Bot_rev Γ φ : Γ φ -> Γ φ.
Proof. intro Hd. dependent induction Hd; auto with proof. Qed.

We prove Lemma 4.1 of (Dyckhoff & Negri 2000). This lemma shows that a weaker version of the ImpL rule of Gentzen's original calculus LJ is still admissible in G4ip. The proof is simple, but requires the inversion lemmas proved above.

Lemma weak_ImpL Γ φ ψ θ :Γ φ -> Γψ θ -> Γ•(φ ψ) θ.
Proof with (auto with proof).
intro Hp. revert ψ θ. induction Hp; intros ψ0 θ0 Hp'; auto with proof.
- exch 0; constructor 4; exch 1; exch 0...
- apply ImpLOr. exch 0...
- exch 0; constructor 7; exch 0...
  + apply IHHp1. exch 0. eapply fst, OrL_rev. exch 0. exact Hp'.
  + apply IHHp2. exch 0. eapply snd, OrL_rev. exch 0. exact Hp'.
- exch 0; exch 1. constructor 9. exch 1; exch 0...
- exch 0. apply ImpLAnd. exch 0...
- exch 0. apply ImpLOr. exch 1; exch 0...
- exch 0. apply ImpLImp; exch 0... apply IHHp2. exch 0...
  eapply ImpLImp_prev. exch 0. eassumption.
Qed.

Global Hint Resolve weak_ImpL : proof.

Contraction

The aim of this section is to prove that the contraction rule is admissible in G4ip.
An auxiliary definition of **height** of a proof, measured along the leftmost branch.
Fixpoint height {Γ φ} (Hp : Γ φ) := match Hp with
| Atom _ _ => 1
| ExFalso _ _ => 1
| AndR Γ φ ψ H1 H2 => 1 + height H1 + height H2
| AndL Γ φ ψ θ H => 1 + height H
| OrR1 Γ φ ψ H => 1 + height H
| OrR2 Γ φ ψ H => 1 + height H
| OrL Γ φ ψ θ H1 H2 => 1 + height H1 + height H2
| ImpR Γ φ ψ H => 1 + height H
| ImpLVar Γ p φ ψ H => 1 + height H
| ImpLAnd Γ φ1 φ2 φ3 ψ H => 1 + height H
| ImpLOr Γ φ1 φ2 φ3 ψ H => 1 + height H
| ImpLImp Γ φ1 φ2 φ3 ψ H1 H2 => 1 + height H1 + height H2
end.

Lemma height_0 {Γ φ} (Hp : Γ φ) : height Hp <> 0.
Proof. destruct Hp; simpl; lia. Qed.

Lemma 4.2 in (Dyckhoff & Negri 2000), showing that a "duplication" in the context of the implication-case of the implication-left rule is admissible.

Lemma ImpLImp_dup Γ φ1 φ2 φ3 θ:
  Γ•((φ1 φ2) φ3) θ ->
    Γφ1 •(φ2 φ3) •(φ2 φ3) θ.
Proof.
intro Hp.
remember (Γ•((φ1 φ2) φ3)) as Γ0 eqn:Heq0.
assert(HeqΓ : Γ Γ0 {[((φ1 φ2) φ3)]}) by ms.
rw HeqΓ 3.
assert(Hin : ((φ1 φ2) φ3) Γ0) by (subst Γ0; ms).
clear Γ HeqΓ Heq0.
(* by induction on the height of the derivation *)
remember (height Hp) as h.
assert(Hleh : height Hp h) by lia. clear Heqh.
revert Γ0 θ Hp Hleh Hin. induction h as [|h]; intros Γ θ Hp Hleh Hin;
[pose (height_0 Hp); lia|].
destruct Hp; simpl in Hleh.
- forward. auto with proof.
- forward. auto with proof.
- apply AndR.
  + apply IHh with Hp1. lia. ms.
  + apply IHh with Hp2. lia. ms.
- forward. apply AndL. exch 0. do 2 backward. apply IHh with Hp. lia. ms.
- apply OrR1. apply IHh with Hp. lia. ms.
- apply OrR2. apply IHh with Hp. lia. ms.
- forward. apply OrL; backward.
  + apply IHh with Hp1. lia. ms.
  + apply IHh with Hp2. lia. ms.
- apply ImpR. backward. apply IHh with Hp. lia. ms.
- do 2 forward. exch 0. apply ImpLVar. exch 0. do 2 backward.
  apply IHh with Hp. lia. ms.
- forward. apply ImpLAnd. backward. apply IHh with Hp. lia. ms.
- forward. apply ImpLOr. exch 0. do 2 backward. apply IHh with Hp. lia. ms.
- case (decide (((φ0 φ4) φ5) = ((φ1 φ2) φ3))); intro Heq.
  + inversion Heq; subst.
    apply weak_ImpL.
    * exch 0. apply ImpR_rev. peapply Hp1.
    * do 2 (exch 0; apply weakening). peapply Hp2.
  + forward. apply ImpLImp; backward.
    * apply IHh with Hp1. lia. ms.
    * apply IHh with Hp2. lia. ms.
Qed.

(* technical lemma for contraction *)
Local Lemma p_contr Γ φ θ:
  (Γφφ) {[φ]} θ ->
  ((Γφ) θ).
Proof. intros * Hd; peapply Hd. Qed.

Admissibility of contraction in G4ip.
Lemma contraction Γ ψ θ : Γψψ θ -> Γψ θ.
Proof.
remember (Γψψ) as Γ0 eqn:Heq0.
assert(HeqΓ : (Γψ) Γ0 {[ψ]}) by ms.
intro Hp. rw HeqΓ 0.
assert(Hin : ψ Γ0) by (subst Γ0; ms).
assert(Hin' : ψ Γ0 {[ψ]}) by(rewrite <- HeqΓ; ms).
clear Γ HeqΓ Heq0. revert Hp.
(* by induction on the weight of ψ *)
remember (weight ψ) as w.
assert(Hle : weight ψ w) by lia.
clear Heqw. revert Γ0 ψ θ Hle Hin Hin'.
induction w; intros Γ ψ θ Hle Hin Hin' Hp; [destruct ψ; simpl in Hle; lia|].
(* by induction on the height of the premise *)
remember (height Hp) as h.
assert(Hleh : height Hp h) by lia. clear Heqh.
revert Γ θ Hp Hleh Hin Hin'. induction h as [|h]; intros Γ θ Hp Hleh Hin Hin';
[pose (height_0 Hp); lia|].
destruct Hp; simpl in Hleh, Hle.
- forward. apply Atom.
- forward. apply ExFalso.
- apply AndR.
  + apply IHh with Hp1. lia. ms. ms.
  + apply IHh with Hp2. lia. ms. ms.
- case (decide= (φ ψ0))); intro Heq.
  + subst. exhibit Hin' 0. apply AndL.
    apply p_contr. simpl in Hle. apply IHw. lia. ms. rewrite union_difference_R; ms.
    exch 1. exch 0. apply p_contr. apply IHw. lia. ms. rewrite union_difference_R; ms.
    exch 1. exch 0. apply AndL_rev. exch 0. exch 1. peapply Hp.
    rewrite <- (difference_singleton _ _ Hin'). ms.
  + rewrite union_difference_L in Hin' by ms.
    forward. apply AndL. exch 0. do 2 backward. apply IHh with Hp. lia. ms. ms.
- apply OrR1. apply IHh with Hp. lia. ms. ms.
- apply OrR2. apply IHh with Hp. lia. ms. ms.
- case (decide= (φ ψ0))); intro Heq.
  + subst. exhibit Hin' 0.
    apply OrL.
    * apply p_contr. simpl in Hle. apply IHw. lia. ms. rewrite union_difference_R; ms.
      refine (fst (OrL_rev _ φ ψ0 _ _)). exch 0. peapply Hp1.
      rewrite <- env_replace; ms.
    * apply p_contr. simpl in Hle. apply IHw. lia. ms. rewrite union_difference_R; ms.
      refine (snd (OrL_rev _ φ ψ0 _ _)). exch 0. peapply Hp2.
      rewrite <- env_replace; ms.
  + rewrite union_difference_L in Hin' by ms.
    forward. apply OrL; backward.
    * apply IHh with Hp1. lia. ms. ms.
    * apply IHh with Hp2. lia. ms. ms.
- apply ImpR. backward. apply IHh with Hp. lia. ms. ms.
- case (decide= (p φ))); intro Heq.
  + subst. exhibit Hin' 0. rewrite union_difference_R in Hin' by ms.
    assert(Hcut : (((ΓVar p) {[Var p φ]}•(Var p φ)) ψ0)); [|peapply Hcut].
    forward. exch 0. apply ImpLVar, p_contr.
    apply IHw. simpl in Hle; lia. ms. rewrite union_difference_L; ms.
    exch 1. apply ImpLVar_rev. exch 0; exch 1. peapply Hp.
    rewrite <- env_replace; ms.
  + rewrite union_difference_L in Hin' by ms.
    do 2 forward. exch 0. apply ImpLVar; exch 0; do 2 backward.
    apply IHh with Hp. lia. ms. ms.
- case (decide= (φ1 φ2 φ3))); intro Heq.
  + subst. exhibit Hin' 0. rewrite union_difference_R in Hin' by ms.
    apply ImpLAnd. apply p_contr.
    apply IHw. simpl in *; lia. ms. rewrite union_difference_L; ms.
    apply ImpLAnd_rev. exch 0. peapply Hp.
    rewrite <- env_replace; ms.
  + rewrite union_difference_L in Hin' by ms.
    forward. apply ImpLAnd. backward. apply IHh with Hp. lia. ms. ms.
- case (decide= (φ1 φ2 φ3))); intro Heq.
  + subst. exhibit Hin' 0. rewrite union_difference_R in Hin' by ms.
    apply ImpLOr. apply p_contr.
    apply IHw. simpl in *; lia. ms. rewrite union_difference_L; ms.
    exch 1; exch 0. apply p_contr.
    apply IHw. simpl in *. lia. ms. rewrite union_difference_L; ms.
    exch 1; exch 0. apply ImpLOr_rev. exch 0. exch 1. peapply Hp.
    rewrite <- env_replace; ms.
  + rewrite union_difference_L in Hin' by ms.
    forward. apply ImpLOr. exch 0. do 2 backward. apply IHh with Hp. lia. ms. ms.
- case (decide= ((φ1 φ2) φ3))); intro Heq.
  + subst. exhibit Hin' 0. rewrite union_difference_R in Hin' by ms.
    apply ImpLImp.
    * apply ImpR.
      do 3 (exch 0; apply p_contr; apply IHw; [simpl in *; lia|ms|rewrite union_difference_L; ms|exch 1]).
      exch 1; apply ImpLImp_dup. (* key lemma *)
      exch 0; exch 1. apply ImpR_rev.
      peapply Hp1. rewrite <- env_replace; ms.
    * apply p_contr; apply IHw; [simpl in *; lia|ms|rewrite union_difference_L; ms|].
      apply (ImpLImp_prev _ φ1 φ2 φ3). exch 0.
      peapply Hp2. rewrite <- env_replace; ms.
  + rewrite union_difference_L in Hin' by ms.
    forward. apply ImpLImp; backward.
    * apply IHh with Hp1. lia. ms. ms.
    * apply IHh with Hp2. lia. ms. ms.
Qed.

Global Hint Resolve contraction : proof.

Theorem generalised_contraction (Γ Γ' : env) φ: Γ' Γ' Γ φ -> Γ' Γ φ.
Proof.
revert Γ.
induction Γ' as [| x Γ' IHΓ'] using gmultiset_rec; intros Γ Hp.
- peapply Hp.
- peapply (contraction (Γ' Γ) x). peapply (IHΓ' (Γxx)). peapply Hp.
Qed.

Admissibility of LJ's implication left rule

We show that the general implication left rule of LJ is admissible in G4ip. This is Proposition 5.2 in (Dyckhoff Negri 2000).

Lemma ImpL Γ φ ψ θ: Γ•(φ ψ) φ -> Γψ θ -> Γ•(φ ψ) θ.
Proof. intros H1 H2. apply contraction, weak_ImpL; auto with proof. Qed.

(* Lemma 5.3 (Dyckhoff Negri 2000) shows that an implication on the left may be
   weakened. *)


Lemma imp_cut φ Γ ψ θ: Γ•(φ ψ) θ -> Γψ θ.
Proof.
intro Hp.
remember (Γ•(φ ψ)) as Γ0 eqn:HH.
assert (Heq: Γ Γ0 {[(φ ψ)]}) by ms.
assert(Hin : (φ ψ) Γ0) by ms. clear HH.
rw Heq 1. clear Heq Γ.
remember (weight φ) as w.
assert(Hle : weight φ w) by lia.
clear Heqw. revert Γ0 φ ψ θ Hle Hin Hp.
induction w; intros Γ φ ψ θ Hle Hin Hp;
 [destruct φ; simpl in Hle; lia|].
induction Hp.
- forward. auto with proof.
- forward. auto with proof.
-apply AndR; intuition.
- forward; apply AndL. exch 0. do 2 backward. apply IHHp. ms.
- apply OrR1; intuition.
- apply OrR2; intuition.
- forward. apply OrL; backward; [apply IHHp1 | apply IHHp2]; ms.
- apply ImpR. backward. apply IHHp. ms.
- case (decide ((p φ0) = (φ ψ))); intro Heq0.
  + inversion Heq0; subst. peapply Hp.
  + do 2 forward. exch 0. apply ImpLVar. exch 0. do 2 backward. apply IHHp; ms.
- case (decide ((φ1 φ2 φ3) = (φ ψ))); intro Heq0.
  + inversion Heq0; subst.
    assert(Heq1 : ((Γ•(φ1 φ2 ψ)) {[φ1 φ2 ψ]}) Γ) by ms;
    rw Heq1 1; clear Heq1. simpl in Hle.
    peapply (IHw (Γ•(φ2 ψ)) φ2 ψ ψ0); [lia|ms|].
    peapply (IHw (Γ•(φ1 φ2 ψ)) φ1 (φ2 ψ) ψ0); [lia|ms|trivial].
  + forward. apply ImpLAnd. backward. apply IHHp. ms.
- case (decide ((φ1 φ2 φ3) = (φ ψ))); intro Heq0.
  + inversion Heq0. subst. clear Heq0.
    apply contraction. simpl in Hle.
    peapply (IHw (Γψ•(φ1 ψ)) φ1 ψ); [lia|ms|].
    exch 0.
    peapply (IHw (Γ•(φ1 ψ)•(φ2 ψ)) φ2 ψ); trivial; [lia|ms].
  + forward. apply ImpLOr; exch 0; do 2 backward; apply IHHp; ms.
- case (decide (((φ1 φ2) φ3) = (φ ψ))); intro Heq0.
  + inversion Heq0. subst. clear Heq0. peapply Hp2.
  + forward. apply ImpLImp; backward; (apply IHHp1 || apply IHHp2); ms.
Qed.

Global Hint Resolve imp_cut : proof.

Correctness of optimizations

To make the definitions of the propositional quantifiers that we extract from the Coq definition more readable, we introduced functions "make_impl", "make_conj" and "make_disj" in Environments.v which perform obvious simplifications such as reducing φ ∧ ⊥ to ⊥ and φ ∨ ⊥ to φ. The following results show that the definitions of these functions are correct, in the sense that it does not make a difference for provability of a sequent whether one uses the literal conjunction, disjunction, and implication, or its optimized version.

Lemma make_impl_sound_L Γ φ ψ θ: Γ•(φ ψ) θ -> Γ•(φ ψ) θ.
Proof.
destruct (make_impl_spec φ ψ) as [[[Hm Heq]|[Hm Heq]]|Hm].
- subst. rewrite Heq. intros Hp. apply TopL_rev in Hp. now apply weakening.
- subst. rewrite Heq. intros Hp. now apply imp_cut in Hp.
- now rewrite Hm.
Qed.

Global Hint Resolve make_impl_sound_L : proof.

Lemma make_impl_sound_L2 Γ φ1 φ2 ψ θ: Γ•(φ1 (φ2 ψ)) θ -> Γ•(φ1 (φ2 ψ)) θ.
Proof.
destruct (make_impl_spec φ2 ψ) as [[[Hm Heq]|[Hm Heq]]|Hm].
- subst. rewrite Heq. intro Hp. apply imp_cut, TopL_rev in Hp. auto with proof.
- subst. rewrite Heq. intro Hp. apply imp_cut, imp_cut, TopL_rev in Hp. auto with proof.
- rewrite Hm. apply make_impl_sound_L.
Qed.

Global Hint Resolve make_impl_sound_L2: proof.

Lemma make_impl_sound_L2' Γ φ1 φ2 ψ θ: Γ•((φ1 φ2) ψ) θ -> Γ•((φ1 φ2) ψ) θ.
Proof.
destruct (make_impl_spec φ1 φ2) as [[[Hm Heq]|[Hm Heq]]|Hm].
- subst. rewrite Heq.
  destruct (make_impl_spec (¬ Bot) ψ) as [[[Hm Heq']|[Hm Heq']]|Hm].
  + congruence.
  + subst. intro Hp. apply imp_cut, TopL_rev in Hp. auto with proof.
  + rewrite Hm. intro Hp. apply weak_ImpL.
       * auto with proof.
       * now apply imp_cut in Hp.
- subst. rewrite Heq.
  destruct (make_impl_spec (¬ Bot) ψ) as [[[Hm Heq']|[Hm Heq']]|Hm].
  + congruence.
  + subst. intro Hp. apply imp_cut, TopL_rev in Hp. auto with proof.
  + rewrite Hm. intro Hp. apply weak_ImpL.
       * auto with proof.
       * now apply imp_cut in Hp.
- rewrite Hm. clear Hm. destruct (make_impl_spec (φ1 φ2) ψ) as [[[Hm Heq]|[Hm Heq]]|Hm].
  + discriminate.
  + subst. intro Hp. apply imp_cut, TopL_rev in Hp. auto with proof.
  + now rewrite Hm.
Qed.

Lemma make_impl_complete_L Γ φ ψ θ: Γ•(φ ψ) θ -> Γ•(φ ψ) θ.
Proof.
destruct (make_impl_spec φ ψ) as [[[Hm Heq]|[Hm Heq]]|Hm].
- subst. rewrite Heq. intros Hp. apply TopL_rev in Hp. now apply weakening.
- subst. rewrite Heq. intros Hp. apply TopL_rev in Hp. now apply weakening.
- now rewrite Hm.
Qed.

Lemma make_impl_complete_L2 Γ φ1 φ2 ψ θ: Γ•(φ1 (φ2 ψ)) θ -> Γ•(φ1 (φ2 ψ)) θ.
Proof.
destruct (make_impl_spec φ2 ψ) as [[[Hm Heq]|[Hm Heq]]|Hm].
- subst. rewrite Heq. intro Hp. apply make_impl_complete_L in Hp.
  apply imp_cut, TopL_rev in Hp. now apply weakening.
- subst. rewrite Heq. intro Hp. apply make_impl_complete_L in Hp.
  apply imp_cut, TopL_rev in Hp. now apply weakening.
- rewrite Hm. apply make_impl_complete_L.
Qed.

Lemma make_impl_complete_R Γ φ ψ: Γ φ ψ -> Γ (φ ψ).
Proof.
destruct (make_impl_spec φ ψ) as [[[Hm Heq]|[Hm Heq]]|Hm]; subst; auto with proof.
now rewrite Hm.
Qed.

Lemma make_impl_sound_R Γ φ ψ: Γ (φ ψ) -> Γ φ ψ.
Proof.
destruct (make_impl_spec φ ψ) as [[[Hm Heq]|[Hm Heq]]|Heq]; subst; rewrite Heq; auto with proof.
Qed.

Global Hint Resolve make_impl_sound_R : proof.

Lemma make_disj_sound_L Γ φ ψ θ : Γφ ψ θ -> Γmake_disj φ ψ θ.
Proof.
intro Hd. apply OrL_rev in Hd as (Hφ&Hψ). unfold make_disj.
destruct φ; trivial;
try (destruct ψ; try case decide; trivial; auto with proof; destruct ψ1; auto with proof; destruct ψ2; auto with proof).
destruct φ1; destruct φ2; destruct ψ; trivial; case decide; intro Heq; try inversion Heq; auto with proof ; destruct ψ1; auto with proof;
destruct ψ2; auto with proof. (* this takes a long time *)
Qed.

Global Hint Resolve make_disj_sound_L : proof.

Lemma make_disj_complete Γ φ ψ θ : Γmake_disj φ ψ θ -> Γφ ψ θ.
Proof.
destruct (make_disj_spec φ ψ) as [[[[[Hm|Hm]|Hm]|Hm]|Hm]|Hm].
6: { now rewrite Hm. }
all : destruct Hm as (Heq&Hm); rewrite Hm; subst; eauto with proof.
Qed.

Lemma make_conj_sound_L Γ φ ψ θ : Γφ ψ θ -> Γmake_conj φ ψ θ.
Proof.
intro Hd. apply AndL_rev in Hd.
destruct (make_conj_spec φ ψ) as [[[[[Hm|Hm]|Hm]|Hm]|Hm]|Hm].
6:{ rewrite Hm. now apply AndL. }
all:(destruct Hm as [Heq Hm]; rewrite Hm; subst; auto with proof).
- eapply TopL_rev. exch 0. exact Hd.
- eapply TopL_rev. exact Hd.
Qed.

Global Hint Resolve make_conj_sound_L : proof.

Lemma make_conj_complete_L Γ φ ψ θ : Γmake_conj φ ψ θ -> Γφ ψ θ.
Proof.
destruct (make_conj_spec φ ψ) as [[[[[Hm|Hm]|Hm]|Hm]|Hm]|Hm].
6:{ now rewrite Hm. }
all:(destruct Hm as [Heq Hm]; rewrite Hm; subst; auto with proof).
Qed.

Lemma make_conj_sound_R Γ φ ψ : Γ φ ψ -> Γ make_conj φ ψ.
Proof.
intro Hd. apply AndR_rev in Hd.
destruct (make_conj_spec φ ψ) as [[[[[Hm|Hm]|Hm]|Hm]|Hm]|Hm].
6:{ rewrite Hm. apply AndR; tauto. }
all:(destruct Hm as [Heq Hm]; rewrite Hm; subst; tauto).
Qed.

Global Hint Resolve make_conj_sound_R : proof.

Lemma make_conj_complete_R Γ φ ψ : Γ make_conj φ ψ -> Γ φ ψ.
Proof.
destruct (make_conj_spec φ ψ) as [[[[[Hm|Hm]|Hm]|Hm]|Hm]|Hm].
6:{ now rewrite Hm. }
all:(destruct Hm as [Heq Hm]; rewrite Hm; subst; auto with proof).
Qed.

Lemma OrR_idemp Γ ψ : Γ ψ ψ -> Γ ψ.
Proof. intro Hp. dependent induction Hp; auto with proof. Qed.

Lemma make_disj_sound_R Γ φ ψ : Γ φ ψ -> Γ make_disj φ ψ.
Proof.
intro Hd.
destruct (make_disj_spec φ ψ) as [[[[[Hm|Hm]|Hm]|Hm]|Hm]|Hm].
6:{ now rewrite Hm. }
all:(destruct Hm as [Heq Hm]; rewrite Hm; subst; auto using OrR2Bot_rev, OrR1Bot_rev with proof).
now apply OrR_idemp.
Qed.

Global Hint Resolve make_disj_sound_R : proof.

Lemma make_disj_complete_R Γ φ ψ : Γ make_disj φ ψ -> Γ φ ψ.
Proof.
destruct (make_disj_spec φ ψ) as [[[[[Hm|Hm]|Hm]|Hm]|Hm]|Hm].
6:{ now rewrite Hm. }
all:(destruct Hm as [Heq Hm]; rewrite Hm; subst; auto using exfalso with proof).
Qed.

Generalized rules

In this section we prove that generalizations of or-left and and-right rules that take more than two formulas are admissible and invertible in the calculus G4ip. This is important in the correctness proof of propositional quantifiers because the propositional quantifiers are defined as large disjunctions / conjunctions of various individual formulas.

Generalized OrL and its invertibility


Lemma disjunction_L Γ Δ θ :
  ((forall φ, φ Δ -> (Γφ θ)) -> (Γ Δ θ)) *
  ((Γ Δ θ) -> (forall φ, φ Δ -> (Γφ θ))).
Proof.
unfold disjunction.
assert(Hcut :
  (forall ψ, (Γψ θ) -> (forall φ, φ Δ -> (Γφ θ)) ->
    (Γfoldl make_disj ψ (nodup form_eq_dec Δ) θ)) *
  (forall ψ,((Γfoldl make_disj ψ (nodup form_eq_dec Δ)) θ ->
    (Γψ θ) * ( φ : form, φ Δ (Γφ) θ)))).
{
  induction Δ; simpl; split; intros ψ Hψ.
  - intro. apply Hψ.
  - split; trivial. intros φ Hin. contradict Hin. auto with *.
  - intro Hall. case in_dec; intro; apply (fst IHΔ); auto with *.
  - case in_dec in Hψ; apply IHΔ in Hψ;
    destruct Hψ as [Hψ Hind].
    + split; trivial; intros φ Hin; destruct (decide= a)); auto with *.
        subst. apply Hind. now apply elem_of_list_In.
    + apply make_disj_complete in Hψ.
        apply OrL_rev in Hψ as [Hψ Ha].
        split; trivial; intros φ Hin; destruct (decide= a)); auto with *.
}
split; apply Hcut. constructor 2.
Qed.

Generalized AndR


Lemma conjunction_R1 Γ Δ : (forall φ, φ Δ -> Γ φ) -> (Γ Δ).
Proof.
intro Hprov. unfold conjunction.
assert(Hcut : forall θ, Γ θ -> Γ foldl make_conj θ (nodup form_eq_dec Δ)).
{
  induction Δ; intros θ ; simpl; trivial.
  case in_dec; intro; auto with *.
  apply IHΔ.
  - intros; apply Hprov. now right.
  - apply make_conj_sound_R, AndR; trivial. apply Hprov. now left.
}
apply Hcut. apply ImpR, ExFalso.
Qed.

Generalized invertibility of AndR


Lemma conjunction_R2 Γ Δ : (Γ Δ) -> (forall φ, φ Δ -> Γ φ).
Proof.
 unfold conjunction.
assert(Hcut : forall θ, Γ foldl make_conj θ (nodup form_eq_dec Δ) -> (Γ θ) * (forall φ, φ Δ -> Γ φ)).
{
  induction Δ; simpl; intros θ .
  - split; trivial. intros φ Hin; contradict Hin. auto with *.
  - case in_dec in ; destruct (IHΔ _ ) as (Hθ' & Hi);
     try (apply make_conj_complete_R in Hθ'; destruct (AndR_rev Hθ')); split; trivial;
     intros φ Hin; apply elem_of_cons in Hin;
     destruct (decide= a)); subst; trivial.
     + apply Hi. rewrite elem_of_list_In; tauto.
     + apply (IHΔ _ ). tauto.
     + apply (IHΔ _ ). tauto.
}
apply Hcut.
Qed.

Generalized AndL


Lemma conjunction_L Γ Δ φ θ: (φ Δ) -> (Γφ θ) -> (Γ Δ θ).
Proof.
intros Hin Hprov. unfold conjunction. revert Hin.
assert(Hcut : forall ψ, ((φ Δ) + (Γψ θ)) -> (Γfoldl make_conj ψ (nodup form_eq_dec Δ) θ)).
{
  induction Δ; simpl; intros ψ [Hin | Hψ].
  - contradict Hin; auto with *.
  - trivial.
  - case in_dec; intro; apply IHΔ; destruct (decide= a)).
    + subst. left. now apply elem_of_list_In.
    + left. auto with *.
    + subst. right. apply make_conj_sound_L. auto with proof.
    + left. auto with *.
  - case in_dec; intro; apply IHΔ; right; trivial.
     apply make_conj_sound_L. auto with proof.
}
intro Hin. apply Hcut. now left.
Qed.

Generalized OrR


Lemma disjunction_R Γ Δ φ : (φ Δ) -> (Γ φ) -> (Γ Δ).
Proof.
intros Hin Hprov. unfold disjunction. revert Hin.
assert(Hcut : forall θ, ((Γ θ) + (φ Δ)) -> Γ foldl make_disj θ (nodup form_eq_dec Δ)).
{
  induction Δ; simpl; intros θ [ | Hin].
  - assumption.
  - contradict Hin; auto with *.
  - case in_dec; intro; apply IHΔ; left; trivial. apply make_disj_sound_R. now apply OrR1.
  - apply elem_of_cons in Hin.
    destruct (decide= a)).
    + subst. case in_dec; intro; apply IHΔ.
        * right. now apply elem_of_list_In.
        * left. apply make_disj_sound_R. now apply OrR2.
    + case in_dec; intro; apply IHΔ; right; tauto.
}
intro Hin. apply Hcut; now right.
Qed.